Knowledge gaps and research priorities for understanding the transmission of Mycobacterium tuberculosis and other airborne infections
DOI:
https://doi.org/10.3396/ijic.v21.23851Keywords:
tuberculosis, SARS-CoV-2, COVID-19, airborne infections, airborne transmission, infectious aerosols, infection prevention and controlAbstract
Despite 5 years of SARS-CoV-2 research, as well as decades of research on tuberculosis (TB), large gaps remain in understanding the transmission of airborne pathogens. Our aim was to delineate these gaps. Understanding them would enable evidence-based, practical efforts to reduce transmission. Building upon the 2017 Roadmap for TB Transmission Science, we interviewed experts in the field and identified six salient topics harboring holes in knowledge that impede prevention and control efforts. These include 1) fundamental elements of aerobiology, 2) detecting and measuring infectious respiratory particles directly in the air, 3) the infectiousness of asymptomatic TB (by extension, other lung infections) and 4) of calm tidal breathing – including their contributions to global epidemiology, 5) the role of ‘superspreading’ in disease incidence, and 6) the duration of infectiousness of highly drug-resistant TB treated with the newest, all-oral short-course regimens. Based on an extensive literature review, we update advances in science since 2017 and then summarize knowledge gaps and research priorities. Several recent systematic reviews all noted the relatively low quality of published research, so there is an overriding need for high-quality studies to provide evidence for national and international entities upon which to base recommendations, guidelines, and standards.
Downloads
References
1.
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization; 2024.
2.
World Health Organization. Implementing the end TB strategy. Geneva: World Health Organization; 2022.
3.
Melsew YA, Doan TN, Gambhir M, Cheng AC, McBryde E, Trauer JM. Risk factors for infectiousness of patients with tuberculosis: a systematic review and meta-analysis. Epidemiol Infect 2018; 146(3): 345–53.
4.
Jindani A, Doré CJ, Mitchison DA. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med 2003; 167(10): 1348–54. doi: 10.1164/rccm.200210-1125OC
5.
Shah M, Dansky Z, Nathavitharana R, Behm H, Brown S, Dov L, et al. National Tuberculosis Coalition of America (NTCA) guidelines for respiratory isolation and restrictions to reduce transmission of pulmonary tuberculosis in community settings. Clin Infect Dis 2024; ciae199. doi: 10.1093/cid/ciae199
6.
Proano A, Bravard MA, Lopez JW. Dynamics of cough frequency in adults undergoing treatment for pulmonary tuberculosis. Clin Infect Dis 2017; 64(9): 1174–81. doi: 10.1093/cid/cix039
7.
Rouillon A, Perdrizet S, Parrot R. Transmission of tubercle bacilli: the effects of chemotherapy. Tubercle 1976; 57(4): 275–99.
8.
Fox GJ, Barry SE, Britton WJ, Marks GB. Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J 2013; 41(1): 140–56. doi: 10.1183/09031936.00070812
9.
Becerra MC, Huang CC, Lecca L, Bayona J, Contreras C, Calderon R, et al. Transmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort study. BMJ 2019; 367: l5894. doi: 10.1136/bmj.l5894
10.
Walker TM, Monk P, Grace Smith E, Peto TEA. Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect 2013; 19(9): 796–802. doi: 10.1111/1469-0691.12183
11.
Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: an overview. J Infect Dis 2017; 216(suppl_6): S629–35. doi: 10.1093/infdis/jix362
12.
Shah NS, Kim P, Kana BD, Rustomjee R. Getting to zero new tuberculosis infections: insights from the National Institutes of Health/US Centers for Disease Control and Prevention/Bill & Melinda Gates Foundation Workshop on Research Needs for Halting Tuberculosis Transmission. J Infect Dis 2017; 216(suppl_6): S627–8. doi: 10.1093/infdis/jix311
13.
Auld SC, Kasmar AG, Dowdy DW, Mathema B, Gandhi NR, Churchyard GJ, et al. Research roadmap for tuberculosis transmission science: where do we go from here and how will we know when we’re there? J Infect Dis 2017; 216(suppl_6): S662–8. doi: 10.1093/infdis/jix353
14.
Mathema B, Andrews JR, Cohen T, Borgdorff MW, Behr M, Glynn JR, et al. Drivers of tuberculosis transmission. J Infect Dis 2017; 216(suppl_6): S644–53. doi: 10.1093/infdis/jix354
15.
Dowdy DW, Grant AD, Dheda K, Nardell E, Fielding K, Moore DAJ. Designing and evaluating interventions to halt the transmission of tuberculosis. J Infect Dis 2017; 216(suppl_6): S654–61. doi: 10.1093/infdis/jix320
16.
Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinson DM, Gandhi NR, et al. Tuberculosis infectiousness and host susceptibility. J Infect Dis 2017; 216(suppl_6): S636–43. doi: 10.1093/infdis/jix361
17.
World Health Organization. Global technical consultation report on proposed terminology for pathogens that transmit through the air. Geneva: World Health Organization; 2024.
18.
Fox GJ, Redwood L, Chang V, Ho J. The effectiveness of individual and environmental infection control measures in reducing the transmission of mycobacterium tuberculosis: a systematic review. Clin Infect Dis 2020; 72(1): ciaa719. doi: 10.1093/cid/ciaa719
19.
Karat AS, Gregg M, Barton HE, Calderon M, Ellis J, Falconer J, et al. Evidence for the use of triage, respiratory isolation, and effective treatment to reduce the transmission of mycobacterium tuberculosis in healthcare settings: a systematic review. Clin Infect Dis 2020; 72(1): ciaa720. doi: 10.1093/cid/ciaa720
20.
Goko C, Forster E, Mason M, Zimmerman PA. Effectiveness of fit testing versus fit checking for healthcare workers respiratory protective equipment: a systematic review. Int J Nurs Sci 2023; 10(4): 568–78. doi: 10.1016/j.ijnss.2023.09.011
21.
Ferrari S, Blázquez T, Cardelli R, Puglisi G, Suárez R, Mazzarella L. Ventilation strategies to reduce airborne transmission of viruses in classrooms: a systematic review of scientific literature. Build Environ 2022; 222: 109366. doi: 10.1016/j.buildenv.2022.109366
22.
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtal AA, Fisman D, et al. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37(2): e0012423. doi: 10.1128/cmr.00124-23
23.
Dinkele R. Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathog 2021; 17: e1009262. doi: 10.1371/journal.ppat.1009262
24.
Domino S. A case study on pathogen transport, deposition, evaporation and transmission: linking high-fidelity computational fluid dynamics simulations to probability of infection. Int J Comput Fluid Dyn 2021; 35(9): 743–57. doi: 10.1080/10618562.2021.1905801
25.
Peng S, Chen Q, Liu E. The role of computational fluid dynamics tools on investigation of pathogen transmission: prevention and control. Sci Total Environ 2020; 746(1): 142090.
26.
Mikszewski A, Stabile L, Buonanno G, Morawska L. The airborne contagiousness of respiratory viruses: a comparative analysis and implications for mitigation. Geosci Front 2022; 13(6): 101285. doi: 10.1016/j.gsf.2021.101285
27.
Oswin H, Haddrell A, Otero-Fernandez M. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc Natl Acad Sci 2022; 119(27): e2200109119. doi: 10.1073/pnas.2200109119
28.
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, et al. Impact of chemical properties of human respiratory droplets and aerosol particles on airborne viruses’ viability and indoor transmission. Viruses 2022; 14(7): 1497. doi: 10.3390/v14071497
29.
Toman K. Tuberculosis case-finding and chemotherapy. 1st ed. Geneva: World Health Organization; 1979.
30.
Acuna-Villaorduna C, White LF, Fennelly KP, Jones-Lopez EC. Tuberculosis transmission: sputum vs aerosols. Lancet Infect Dis 2016; 16(7): 770–71.
31.
Jones-Lopez EC, Namugga O, Mumbowa F, Ssebidandi M, Mbabazi O, Moine S. Cough aerosols of Mycobacterium tuberculosis predict new infection: a household contact study. Am J Respir Crit Care Med 2013; 187(9): 1007–15.
32.
Wood R. Real-time investigation of tuberculosis transmission: developing the respiratory aerosol sampling chamber (RASC). PLoS One 2016; 11: 0146658. doi: 10.1371/journal.pone.0146658
33.
Middelkoop K, Koch AS, Hoosen Z, Bryden W, Call C, Seldon R. Environmental air sampling for detection and quantification of Mycobacterium tuberculosis in clinical settings: proof of concept. Infect Control Hosp Epidemiol 2023; 44(5): 774–9.
34.
Hassane-Harouna S, Braet SM, Decroo T, Camara LM, Delamou A, de Bock S, et al. Face mask sampling (FMS) for tuberculosis shows lower diagnostic sensitivity than sputum sampling in Guinea. Ann Clin Microbiol Antimicrob 2023; 22(1): 81. doi: 10.1186/s12941-023-00633-8
35.
Williams CM, Muhammad AK, Sambou B, Bojang A, Jobe A, Daffeh G, et al. Exhaled Mycobacterium tuberculosis predicts incident infection in household contacts. Clin Infect Dis 2023; 76(3): e957–64. doi: 10.1093/cid/ciac455
36.
Williams CM, Pan D, Decker J, Wisniewska A, Fletcher E, Sze S, et al. Exhaled SARS-CoV-2 quantified by face-mask sampling in hospitalised patients with COVID-19. J Infect 2021; 82(6): 253–9. doi: 10.1016/j.jinf.2021.03.018
37.
Nyaruaba R, Xiong J, Mwaliko C, Wang N, Kibii BJ, Yu J, et al. Development and evaluation of a single dye duplex droplet digital PCR assay for the rapid detection and quantification of Mycobacterium tuberculosis. Microorganisms 2020; 8(5): 701.
38.
Cho SM, Shin S, Kim Y, Song W, Hong SG, Jeong SH. A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR. Clin Microbiol Infect 2020; 26(7): 942e.1–5.
39.
Ma J, Jiang G, Ma Q, Wang H, Du M, Wang C. Rapid detection of airborne protein from Mycobacterium tuberculosis using a biosensor detection system. Analyst 2022; 147(4): 614–24.
40.
Patterson B. Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Res 2018; 1: 11. doi: 10.12688/gatesopenres.12758.2
41.
Cheng J, An Y, Wang Q, Chen Z, Tong Y. Visual detection of Mycobacterium tuberculosis in exhaled breath using N95 enrichment respirator, RPA, and lateral flow assay. Talanta 2025; 286: 127490. doi: 10.1016/j.talanta.2024.127490
42.
Huffman J, Perring A, Savage N, Clot B, Crouzy B, Tummon F, et al. Real-time sensing of bioaerosols: review and current perspectives. Aerosol Sci Technol 2020; 54(5): 465–95.
43.
Kabir E, Azzouz A, Raza N, Bhardwaj SK, Kim KH, Tabatabaei M, et al. Recent advances in monitoring, sampling, and sensing techniquesfor bioaerosols in the atmosphere. ACS Sens 2020; 5(5): 1254–67. doi: 10.1021/acssensors.9b02585
44.
An T, Liang Z, Chen Z, Li G. Recent progress in online detection methods of bioaerosols. Fundam Res 2024; 4(3): 442–54. doi: 10.1016/j.fmre.2023.05.012
45.
McNerney R. Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infect Dis 2010; 10: 161. doi: 10.1186/1471-2334-10-161
46.
Williams CM. Face mask sampling for the detection of Mycobacterium tuberculosis in expelled aerosols. PLoS One 2014; 9: 104921. doi: 10.1371/journal.pone.0104921
47.
Williams CM, Abdulwhhab M, Birring SS, De Kock E, Garton N, Townsend E, et al. Exhaled Mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: prospective observational studies. Lancet Infect Dis 2020; 20(5): 607–17. doi: 10.1016/S1473-3099(19)30707-8
48.
Tedeschini E, Pasqualini S, Emiliani C, Marini E, Valecchi A, Laoreti C, et al. Monitoring of indoor bioaerosol for the detection of SARS-CoV-2 in different hospital settings. Front Public Health 2023; 11: 1169073. doi: 10.3389/fpubh.2023.1169073
49.
Li S. Assessing airborne transmission risks in COVID-19 hospitals by systematically monitoring SARS-CoV-2 in the air. Microbiol Spectr 2023; 11: 0109923. doi: 10.1128/spectrum.01099-23
50.
Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis 2019; 19(1): 101. doi: 10.1186/s12879-019-3707-y
51.
Kendall EA, Shrestha S, Dowdy DW. The epidemiological importance of subclinical tuberculosis. a critical reappraisal. Am J Respir Crit Care Med 2021; 203(2): 168–74. doi: 10.1164/rccm.202006-2394PP
52.
Zaidi SMA, Coussens AK, Seddon JA. Beyond latent and active tuberculosis: scoping review of conceptual frameworks. EClinicalMedicine 2023; 66: 102332. doi: 10.1016/j.eclinm.2023.102332
53.
Coussens AK, Zaidi SMA, Allwood BW. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir Med 2024; 12(6): 484–98. doi: 10.1016/S2213-2600(24)00028-6
54.
Frascella B, Richards AS, Sossen B. Subclinical tuberculosis disease-a review and analysis of prevalence surveys to inform definitions, burden, associations, and screening methodology. Clin Infect Dis 2021; 73(3): 830–41. doi: 10.1093/cid/ciaa1402
55.
Stuck L, Klinkenberg E, Abdelgadir Ali N. Prevalence of subclinical pulmonary tuberculosis in adults in community settings: an individual participant data meta-analysis. Lancet Infect Dis 2024; 24(7): 726–36. doi: 10.1016/S1473-3099(24)00011-2
56.
Teo AKJ, MacLean EL, Fox GJ. Subclinical tuberculosis: a meta-analysis of prevalence and scoping review of definitions, prevalence and clinical characteristics. Eur Respir Rev 2024; 33(172): 230208. doi: 10.1183/16000617.0208-2023.
57.
WHO. Report of the WHO consultation on asymptomatic tuberculosis, Geneva, Switzerland, 14–15 October 2024. Geneva: World Health Organization; 2025.
58.
Tan Q, Huang CC, Becerra MC. Chest Radiograph Screening for Detecting Subclinical Tuberculosis in Asymptomatic Household Contacts. Emerg Infect Dis 2024; 30(6): 1115–24. doi: 10.3201/eid3006.231699
59.
Coleman M, Martinez L, Theron G, Wood R, Marais B. Mycobacterium tuberculosis transmission in high-incidence settings. Pathogens 2022; 11(11): 1228. doi: 10.3390/pathogens11111228
60.
Nguyen HV, Tiemersma E, Nguyen NV, Nguyen HB, Cobelens F. Disease transmission by patients with subclinical tuberculosis. Clin Infect Dis 2023; 76(11): 2000–6. doi: 10.1093/cid/ciad027
61.
Ziemele B, Ranka R, Ozere I. Pediatric and adolescent tuberculosis in Latvia, 2011–2014: case detection, diagnosis and treatment. Int J Tuberc Lung Dis 2017; 21(6): 637–45. doi: 10.5588/ijtld.16.0270
62.
Fritschi N, Wind A, Hammer J, Ritz N. Subclinical tuberculosis in children: diagnostic strategies for identification reported in a 6-year national prospective surveillance study. Clin Infect Dis 2022; 74(4): 678–84. doi: 10.1093/cid/ciab708
63.
Emery JC, Dodd PJ, Banu S. Estimating the contribution of subclinical tuberculosis disease to transmission: an individual patient data analysis from prevalence surveys. Elife 2023; 12: 82469. doi: 10.7554/eLife.82469.
64.
Verdier J, de Vlas SJ, Kidgell-Koppelaar I, Richardus JH. Risk factors for tuberculosis in contact investigations in Rotterdam, the Netherlands. Infect Dis Rep 2012; 4(2): e26. doi: 10.4081/idr.2012.e26
65.
Dinkele R. Aerosolization of Mycobacterium tuberculosis by tidal breathing. Am J Respir Crit Care Med 2022; 206: 206–16. doi: 10.1164/rccm.202110-2378OC
66.
Shaikh A, Sriraman K, Vaswani S, Oswal V, Mistry N. Detection of Mycobacterium tuberculosis RNA in bioaerosols from pulmonary tuberculosis patients. Int J Infect Dis 2019; 86: 5–11. doi: 10.1016/j.ijid.2019.06.006
67.
Dinkele R, Gessner S, Patterson B, McKerry A, Hoosen Z, Vazi A, et al. Persistent Mycobacterium tuberculosis bioaerosol release in a tuberculosis-endemic setting. medRxiv 2024; 27(9): 110731. doi: 10.1016/j.isci.2024.110731.
68.
Stadnytskyi V, Anfinrud P, Bax A. Breathing, speaking, coughing or sneezing: what drives transmission of SARS-CoV-2? J Intern Med 2021; 290(5): 1010–27. doi: 10.1111/joim.13326
69.
Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA 2020; 117(22): 11875–7. doi: 10.1073/pnas.2006874117
70.
Anfinrud P, Stadnytskyi V, Bax CE, Bax A. Visualizing speech-generated oral fluid droplets with laser light scattering. N Engl J Med 2020; 382(21): 2061–3. doi: 10.1056/NEJMc2007800
71.
Bax A, Bax CE, Stadnytskyi V, Anfinrud P. SARS-CoV-2 transmission via speech-generated respiratory droplets. Lancet Infect Dis 2021; 21(3): 318. doi: 10.1016/S1473-3099(20)30726-X
72.
Gharpure R, Sami S, Vostok J, Johnson H, Hall N, Foreman A, et al. Multistate outbreak of SARS-CoV-2 infections, including vaccine breakthrough infections, associated with large public gatherings, United States. Emerg Infect Dis 2022; 28(1): 35–43. doi: 10.3201/eid2801.212220
73.
Sultan L, Nyka W, Mills C, O’Grady F, Wells W. Tuberculosis disseminators. Am Rev Resp Dis 1960; 82(22): 358–69.
74.
Escombe AR, Oeser C, Gilman RH, Navincopa M, Ticona E, Martinez C, et al. The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model. Clin Infect Dis 2007; 44(10): 1349–57. doi: 10.1086/515397
75.
Jones-López EC, Acuña-Villaorduña C, Ssebidandi M, Gaeddert M, Kubiak RW, Ayakaka I, et al. Cough aerosols of mycobacterium tuberculosis in the prediction of incident tuberculosis disease in household contacts. Clin Infect Dis 2016; 63(1): 10–20. doi: 10.1093/cid/ciw199
76.
Smith J, Oeltmann J, Hill A, Tobias JL, Boyd R, Click ES, et al. Characterizing tuberculosis transmission dynamics in high-burden urban and rural settings. Nat Sci Rep 2022; 12(1): 6780. doi: 10.1038/s41598-022-10488-2
77.
Smith J, Cohen T, Dowdy D, Shrestha S, Gandhi N, Hill A. Quantifying mycobacterium tuberculosis transmission dynamics across global settings: a systematic analysis. Am J Epidemiol 2023; 192(1): 133–45.
78.
McKee CD, Yu EX, Garcia A, Jackson J, Koyuncu A, Rose S, et al. Superspreading of SARS-CoV-2: a systematic review and meta-analysis of event attack rates and individual transmission patterns. Epidemiol Infect 2024; 152: e121. doi: 10.1017/S0950268824000955
79.
Wang L. Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission. Indoor Air 2022; 32: 13064. doi: 10.1111/ina.13064
80.
Wegehaupt O, Endo A, Vassall A. Superspreading, overdispersion and their implications in the SARS-CoV-2 (COVID-19) pandemic: a systematic review and meta-analysis of the literature. BMC Public Health 2023; 23(1): 1003. doi: 10.1186/s12889-023-15915-1
81.
Noble R. Infectiousness of pulmonary tuberculosis after starting chemotherapy. Am J Infect Control 1981; 9: 6–10.
82.
Riley RL, Mills CC, Nyka W. Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. Am J Epidemiol 1995; 142(1): 3–14. doi: 10.1093/oxfordjournals.aje.a117542
83.
Calderwood CJ, Wilson JP, Fielding KL. Dynamics of sputum conversion during effective tuberculosis treatment: a systematic review and meta-analysis. PLoS Med 2021; 18(4): 1003566. doi: 10.1371/journal.pmed.1003566
84.
Loiseau C, Windels E, Gygli S. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat Commun 2023; 14(1): 1988.
85.
Burgos M, DeRiemer K, Small PM, Hopewell PC, Daley CL. Effect of drug resistance on the generation of secondary cases of tuberculosis. J Infect Dis 2003; 188(12): 1878–84. doi: 10.1086/379895
86.
Gagneux S. Fitness cost of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 2009; 15 Suppl 1: 66–8. doi: 10.1111/j.1469-0691.2008.02685.x
87.
Shah NS, Yuen CM, Heo M, Tolman AW, Becerra MC. Yield of contact investigations in households of patients with drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis 2014; 58(3): 381–91. doi: 10.1093/cid/cit643
88.
Grandjean L, Gilman RH, Martin L. Transmission of multidrug-resistant and drug-susceptible tuberculosis within households: a prospective cohort study. PLoS Med 2015; 12(6): 1001843. doi: 10.1371/journal.pmed.1001843
89.
Dharmadhikari AS, Basaraba RJ, Van Der Walt ML, Weyer K, Mphalele M, Venter K, et al. Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis 2011; 91(4): 329–38. doi: 10.1016/j.tube.2011.03.002
90.
Dharmadhikari AS, Mphahlele M, Venter K, Stoltz A, Mathebula R, Masotla T, et al. Rapid impact of effective treatment on transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2014; 18(9): 1019–25. doi: 10.5588/ijtld.13.0834
91.
Zainabadi K, Vilbrun SC, Mathurin LD, Walsh KF, Pape JW, Fitzgerald DW, et al. A bedaquiline, pyrazinamide, levofloxacin, linezolid, and clofazimine second-line regimen for tuberculosis displays similar early bactericidal activity as the standard rifampin-based first-line regimen. J Infect Dis 2024; 230(2): e447–56. doi: 10.1093/infdis/jiad564
92.
Fox GJ, Schaaf HS, Mandalakas A, Chiappini E, Zumla A, Marais BJ. Preventing the spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin Microbiol Infect 2017; 23(3): 147–53. doi: 10.1016/j.cmi.2016.08.024
93.
Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook A, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020; 382(10): 893–902. doi: 10.1056/NEJMoa1901814
94.
Stoltz A, Nathavitharana R, de Kock E, Ueckermann V, Jensen P, Mendel CM, et al. Estimating the Early Transmission Inhibition of new treatment regimens for drug-resistant tuberculosis. J Infect Dis 2025; 232(1): jiaf005. doi: 10.1093/infdis/jiaf005
95.
Koele SE, Phillips PPJ, Upton CM. Early bactericidal activity studies for pulmonary tuberculosis: a systematic review of methodological aspects. Int J Antimicrob Agents 2023; 61(5): 106775. doi: 10.1016/j.ijantimicag.2023.106775
96.
Koul A, Vranckx L, Dhar N. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun Feb 2014; 5: 3369. doi: 10.1038/ncomms4369
97.
Diacon AH, Dawson R, Du Bois J, Narunsky K, Venter A, Donald PR, et al. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother 2012; 56(6): 3027–31. doi: 10.1128/AAC.06125-11
98.
Diacon AH, Dawson R, Von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 2012; 380(9846): 986–93. doi: 10.1016/S0140-6736(12)61080-0
99.
Poonawala H, Zhang Y, Kuchibhotla S, Green AG, Cirillo DM, Di Marco F, et al. Transcriptomic responses to antibiotic exposure in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68(5): e0118523. doi: 10.1128/aac.01185-23
100.
Assemie MA, Alene M, Petrucka P, Leshargie CT, Ketema DB. Time to sputum culture conversion and its associated factors among multidrug-resistant TB patients East Africa: systematic review and meta-analysis. Int J Infect Dis 2020; 98: 230–6. doi: 10.1016/j.ijid.2020.06.029
101.
Nyang’wa BT, Berry C, Kazounis E, Motta I, Parpieva N, Tigay Z, et al. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N Engl J Med 2022; 387(25): 2331–43. doi: 10.1056/NEJMoa2117166
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 J. Peter Cegielski, Sevim Ahmedov, Jun Cheng, Collin Dubick, Emily Evans, Paul A. Jensen, Avinash Kanchar, Anita Rani Kansal, Che-Chi Lin, Yuhong Liu, Michael Marll, Gyanshankar Mishra, Matsie Mphahlele, Edward Nardell, Jako-Albert Nice, Jerod N. Scholten, Carrie Tudor, Martie van der Walt, Helene Mari van der Westhuizen, Varvara Vauhkonen, Richard L. Vincent, Grigory Volchenkov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to IJIC. Read the full Copyright- and Licensing Statement.


