Do reusables pose greater infectious risks than disposables for consumer goods? A systematic literature review

Authors

  • Sanjidah Ahmed Ira Tandon School of Engineering, New York University, Hicksville, NY, USA
  • Brooke Elise Sherry Department of Population Health, NYU Langone Health, New York, NY, USA
  • Ruhana Amin NYU Tandon School of Engineering, Ozone Park, NY, USA
  • Ma-sum Abdul-Hamid New York University, Saadiyat Island, Abu Dhabi, United Arab Emirates
  • Timothy Roberts Health Sciences Library, NYU Langone Health, New York, NY, USA
  • Sarah Hochman Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
  • Cassandra L. Thiel Department of Population Health, NYU Langone Health, New York, NY, USA

DOI:

https://doi.org/10.3396/ijic.v20.23758

Keywords:

single-use plastic, reusable, food service, pathogens, fomites, infection, sustainability

Abstract

Increased concern over climate change and the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus resulted in a clash of political directives around reusable and disposable food serviceware. Decreasing single-use items will likely reduce consumption and environmental emissions; however, improper cleaning of reusable items could result in greater risks of disease transmission. We sought to assess the risks of reusable and disposable food serviceware and document disinfection protocols by conducting a systematic literature review of articles that assessed materials or products that could be fomites to specific food-borne pathogens. After initial screening, the study team extracted data from 122 articles. The most common pathogens studied were E. coli (25% of included studies), general bacteria (24%), and Norovirus (16%). Thirteen studies (8%) focused on SARS-CoV-2. A majority of studies analyzed plastics (27%), stainless steel (22%), or porous surfaces such as paper and cardboard (12%). Forty seven of the studies (35%) were conducted in a food service setting, and 40 studies (30%) tested disinfection techniques. Despite a large body of related literature, there is very little evidence suggesting that either reusable or disposable food serviceware is safer for minimizing infectious risks. Pathogens can survive on various fomites, though greater surface porosity and higher humidity levels increase viability of most pathogens. There appear to be no major differences in pathogen viability on various fomites. There is a paucity of research that can specifically aid in developing policy or guidelines for appropriate use of reusable food serviceware. Though given recent studies on SARS-CoV-2, banning reusable bags and food serviceware is an inappropriate response to this particular pathogen, which is rarely spread through surface contact. Further research is needed that explicitly studies pathogen viability, transmission risks, and appropriate disinfection techniques for disposable and reusable food serviceware in order to devise effective sustainability policies.

Downloads

Download data is not yet available.

References

1. Neufeld L, Stassen F, Sheppard R, Gilman T. The new plastics economy: rethinking the future of plastics. World Economic Forum; 2016.

2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782. doi: 10.1126/sciadv.1700782

3. Breaking the plastic wave: a comprehensive assessment of pathways towards stopping ocean plastic pollution. Pew Charitable Trusts; 2020.

4. Dai L, Ruan R, You S, Lei H. Paths to sustainable plastic waste recycling. Science 2022; 377(6609): 934. doi: 10.1126/science.ade2221

5. Lui G, Lai CKC, Chen Z, et al. SARS-CoV-2 RNA detection on disposable wooden chopsticks, Hong Kong. Emerg Infect Dis 2020; 26(9): 2274–6. doi: 10.3201/eid2609.202135

6. Zhao W, van der Voet E, Huppes G, Zhang Y. Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. Int J Life Cycle Assess 2009; 14(2): 114–21. doi: 10.1007/s11367-008-0049-1

7. Bell L, Scutelnicu Todoran G. Plastic bag legislation in the United States: influential factors on its creation. J Environ Stud Sci 2022; 12: 260–71. doi: 10.1007/s13412-021-00736-8

8. Hale RC, Song B. Single-use plastics and COVID-19: scientific evidence and environmental regulations. Environ Sci Technol 2020; 54(12): 7034–6. doi: 10.1021/acs.est.0c02269

9. Repp KK, Keene WE. A point-source norovirus outbreak caused by exposure to fomites. J Infect Dis 2012; 205(11): 1639–41. doi: 10.1093/infdis/jis250

10. Hirai Y. Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J Hosp Infect 1991; 19(3): 191–200. doi: 10.1016/0195-6701(91)90223-U

11. Motz PDV, Young L, Motz M, Young S. A sticking point in assessing bacterial contamination: adhesive characters of bacterial specializations, swab features, and fomite surface properties skew colony counts. J Pure Appl Microbiol 2019; 13: 2533–44. doi: 10.22207/JPAM.13.4.68

12. Takoi H, Fujita K, Hyodo H, et al. Acinetobacter baumannii can be transferred from contaminated nitrile examination gloves to polypropylene plastic surfaces. Am J Infect Control 2019; 47(10): 1171–5. doi: 10.1016/j.ajic.2019.04.009

13. Kayes MI, Galante AJ, Stella NA, Haghanifar S, Shanks RMQ, Leu PW. Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. React Funct Polym 2018; 128: 40–6. doi: 10.1016/j.reactfunctpolym.2018.04.013

14. Lopez GU, Gerba CP, Tamimi AH, Kitajima M, Maxwell SL, Rose JB. Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions. Appl Environ Microbiol 2013; 79(18): 5728–34. doi: 10.1128/AEM.01030-13

15. Souli M, Galani I, Plachouras D, et al. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother 2013; 68(4): 852–7. doi: 10.1093/jac/dks473

16. Wilks SA, Michels H, Keevil CW. The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 2005; 105(3): 445–54.

17. Thormar H, Hilmarsson H. Killing of Campylobacter on contaminated plastic and wooden cutting boards by glycerol monocaprate (monocaprin). Lett Appl Microbiol 2010; 51(3): 319–24. doi: 10.1111/j.1472-765X.2010.02898.x

18. Gorman R, Bloomfield S, Adley CC. A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. Int J Food Microbiol 2002; 76(1–2): 143–50. doi: 10.1016/S0168-1605(02)00028-4

19. Mattick K, Durham K, Hendrix M, et al. The microbiological quality of washing-up water and the environment in domestic and commercial kitchens. J Appl Microbiol 2003; 94(5): 842–8. doi: 10.1046/j.1365-2672.2003.01904.x

20. Nerandzic MM, Thota P, Sankar CT, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol 2015; 36(2): 192–7. doi: 10.1017/ice.2014.36

21. Block C. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces. J Hosp Infect 2004; 57(2): 144–8. doi: 10.1016/j.jhin.2004.01.019

22. Alqumber MA. Clostridium difficile in retail baskets, trolleys, conveyor belts, and plastic bags in Saudi Arabia. Saudi Med J 2014; 35(10): 1274–7.

23. Beumer, RR, Te Giffel, MC. Pathogens in domestic kitchens: facts and fiction. In: Tuijtelaars RA, Samson ACJ, Rombouts FM, Notermans S, eds. Food microbiology and food safety into the next millennium: Proceedings of the 17th international conference of the international committee on food microbiology and hygiene (ICFMH), Veldhoven, The Netherlands, 12-17 September 1999/Zeist: Foundation Food Micro, 1999, 99: 345–347.

24. Christison CA, Lindsay D, von Holy A. Cleaning and handling implements as potential reservoirs for bacterial contamination of some ready-to-eat foods in retail delicatessen environments. J Food Prot 2007; 70(12): 2878–83. doi: 10.4315/0362-028X-70.12.2878

25. Sirsat SA, Choi JK, Almanza BA, Neal JA. Persistence of Salmonella and E. coli on the surface of restaurant menus. J Environ Health 2013; 75(7): 8–14; quiz 54.

26. Hayyan. I. Al-Taweil EMTNKMSYAD. Bacterial contamination of kitchen sponges and cutting surfaces and disinfection procedures. Indian J Public Health Res Dev 2020; 11(7): 1229–35.

27. Wendt C, Dietze B, Dietz E, Rüden H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 1997; 35(6): 1394–7. doi: 10.1128/jcm.35.6.1394-1397.1997

28. Shimoda T, Okubo T, Enoeda Y, et al. Effect of thermal control of dry fomites on regulating the survival of human pathogenic bacteria responsible for nosocomial infections. J PLoS One 2019; 14(12): e0226952.

29. Allan JT, Yan Z, Genzlinger LL, Kornacki JL. Temperature and biological soil effects on the survival of selected foodborne pathogens on a mortar surface. J Food Prot 2004; 67(12): 2661–5. doi: 10.4315/0362-028X-67.12.2661

30. Neely AN. A survey of gram-negative bacteria survival on hospital fabrics and plastics. J Burn Care Rehabil 2000; 21(6): 523–7. doi: 10.1097/00004630-200021060-00009

31. Lücke F-K, Skowyrska A. Hygienic aspects of using wooden and plastic cutting boards, assessed in laboratory and small gastronomy units. J Verbrauchersch Lebensm 2015; 10: 317–22. doi: 10.1007/s00003-015-0949-5

32. DeVere E, Purchase D. Effectiveness of domestic antibacterial products in decontaminating food contact surfaces. Food Microbiol 2007; 24(4): 425–30. doi: 10.1016/j.fm.2006.07.013

33. Kim SJ, Si J, Lee JE, Ko G. Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces. Environ Sci Technol 2012; 46(24): 13303–10.

34. Takahashi H, Ohuchi A, Miya S, Izawa Y, Kimura B. Effect of food residues on norovirus survival on stainless steel surfaces. PLoS One 2011; 6(8): e21951. doi: 10.1371/journal.pone.0021951

35. Fankem SL, Boone SA, Gaither M, Gerba CP. Outbreak of norovirus illness in a college summer camp: impact of cleaning on occurrence of norovirus on fomites. J Environ Health 2014; 76(8): 20–6.

36. Canales RA, Reynolds KA, Wilson AM, et al. Modeling the role of fomites in a norovirus outbreak. J Occup Environ Hyg 2019; 16(1): 16–26. doi: 10.1080/15459624.2018.1531131

37. Mokhtari A, Jaykus LA. Quantitative exposure model for the transmission of norovirus in retail food preparation. Int J Food Microbiol 2009; 133(1–2): 38–47.

38. Mouchtouri VA, Koureas M, Kyritsi M, et al. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int J Hyg Environ Health 2020; 230: 113599.

39. Yang M, Li L, Huang T, et al. SARS-CoV-2 detected on environmental fomites for both asymptomatic and symptomatic patients with COVID-19. Am J Respir Crit Care Med 2021; 203(3): 374–8. doi: 10.1164/rccm.202006-2136LE

40. Ben-Shmuel A, Brosh-Nissimov T, Glinert I, et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin Microbiol Infect 2020; 26(12): 1658–62. doi: 10.1016/j.cmi.2020.09.004

41. Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 2023; 95(1): e28103. doi: 10.1002/jmv.28103

42. Magurano F, Baggieri M, Marchi A, Rezza G, Nicoletti L. SARS-CoV-2 infection: the environmental endurance of the virus can be influenced by the increase of temperature. Clin Microbiol Infect 2021; 27(2): 289.e285–9.e287. doi: 10.1016/j.cmi.2020.10.034

43. Riddell S, Goldie S, Hill A, Eagles D, Drew TW. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 2020; 17(1): 145. doi: 10.1186/s12985-020-01418-7

44. Biryukov J, Boydston JA, Dunning RA, et al. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on Surfaces. mSphere 2020; 5(4): 00441–00420.

45. Kasloff SB, Leung A, Strong JE, Funk D, Cutts T. Stability of SARS-CoV-2 on critical personal protective equipment. Sci Rep 2021; 11(1): 984. doi: 10.1038/s41598-020-80098-3

46. Xie L, Liu F, Liu J, Zeng H. A nanomechanical study on deciphering the stickiness of SARS-CoV-2 on inanimate surfaces. ACS Appl Mater Interfaces 2020; 12(52): 58360–8.

47. Whitworth C, Mu Y, Houston H, et al. Persistence of bacteriophage Phi 6 on porous and nonporous surfaces and the potential for its use as an Ebola Virus or coronavirus surrogate. Appl Environ Microbiol 2020; 86(17): 1–11. doi: 10.1128/AEM.01482-20

48. Bae SC, Park SY, Kim AN, Oh MH, Ha SD. Survival of hepatitis A virus on various food-contact surfaces during 28 days of storage at room temperature. Food Res Int 2014; 64: 849–54.

49. Thompson KA, Bennett AM. Persistence of influenza on surfaces. J Hosp Infect 2017; 95(2): 194–9. doi: 10.1016/j.jhin.2016.12.003

50. Auger N, Rhéaume M-A, Bilodeau-Bertrand M, Tang T, Kosatsky T. Climate and the eye: case-crossover analysis of retinal detachment after exposure to ambient heat. Environ Res 2017; 157: 103–9. doi: 10.1016/j.envres.2017.05.017

51. Abad FX, Pintó RM, Bosch A. Disinfection of human enteric viruses on fomites. FEMS Microbiol Lett 1997; 156(1): 107–11. doi: 10.1016/S0378-1097(97)00410-2

52. Abad FX, Pintó RM, Bosch A. Survival of enteric viruses on environmental fomites. Appl Environ Microbiol 1994; 60(10): 3704–10.

53. Hall CB, Douglas RG, Jr, Geiman JM. Possible transmission by fomites of respiratory syncytial virus. J Infect Dis 1980; 141(1): 98–102. doi: 10.1093/infdis/141.1.98

54. Sadowski R, Strus M, Buchalska M, Heczko PB, Macyk W. Visible light induced photocatalytic inactivation of bacteria by modified titanium dioxide films on organic polymers. Photochem Photobiol Sci 2015; 14(3): 514–9. doi: 10.1039/c4pp00270a

55. Livingston SH, Cadnum JL, Benner KJ, Donskey CJ. Efficacy of an ultraviolet-A lighting system for continuous decontamination of health care-associated pathogens on surfaces. Am J Infect Control 2020; 48(3): 337–9. doi: 10.1016/j.ajic.2019.08.003

56. Mitchell JB, Sifuentes LY, Wissler A, Abd-Elmaksoud S, Lopez GU, Gerba CP. Modelling of ultraviolet light inactivation kinetics of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, Clostridium difficile spores and murine norovirus on fomite surfaces. J Appl Microbiol 2019; 126(1): 58–67.

57. Bentley K, Dove BK, Parks SR, Walker JT, Bennett AM. Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus. J Hosp Infect 2012; 80(2): 116–21. doi: 10.1016/j.jhin.2011.10.010

58. Rudnick SN, McDevitt JJ, First MW, Spengler JD. Inactivating influenza viruses on surfaces using hydrogen peroxide or triethylene glycol at low vapor concentrations. Am J Infect Control 2009; 37(10): 813–9.

59. Yeargin T, Fraser A, Huang G, Jiang X. Recovery and disinfection of two human norovirus surrogates, feline calicivirus and murine norovirus, from hard nonporous and soft porous surfaces. J Food Protect 2015; 78(10): 1842–50. doi: 10.4315/0362-028X.JFP-14-515

60. Sexton JD, Wilson AM, Sassi HP, Reynolds KA. Tracking and controlling soft surface contamination in health care settings. Am J Infect Control 2018; 46(1): 39–43. doi: 10.1016/j.ajic.2017.08.002

61. Beer D, Vandermeer B, Brosnikoff C, Shokoples S, Rennie R, Forgie S. Bacterial contamination of health care workers’ pagers and the efficacy of various disinfecting agents. Pediatr Infect Dis J 2006; 25(11): 1074–5. doi: 10.1097/01.inf.0000242649.27400.94

62. Gaunt L, Higgins S, Hughes J. Decontamination of surface borne bacteria by ionized antimicrobial vapours. J Electrostat 2005; 63(6): 809–14. doi: 10.1016/j.elstat.2005.03.076

63. Demir B, Broughton R, Huang T, Bozack M, Worley S. Polymeric antimicrobial N-halamine-surface modification of stainless steel. Ind Eng Chem Res 2017; 56: 11773–81. doi: 10.1021/acs.iecr.7b02412

64. Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control 2008; 36(8): 559–63. doi: 10.1016/j.ajic.2007.10.021

65. Rupp ME, Huerta T, Yu S, et al. Hospital basins used to administer chlorhexidine baths are unlikely microbial reservoirs. Infect Control Hosp Epidemiol 2013; 34(6): 643–5. doi: 10.1086/670622

66. Thormar H, Hilmarsson H. Glycerol monocaprate (monocaprin) reduces contamination by Escherichia coli and Salmonella enteritidis on hard surfaces. Food Control 2012; 25(2): 505–10. doi: 10.1016/j.foodcont.2011.11.024

Published

2024-10-07

How to Cite

Ira, S. A., Sherry, B. E., Amin, R., Abdul-Hamid, M.- sum, Roberts, T., Hochman, S., & Thiel, C. L. (2024). Do reusables pose greater infectious risks than disposables for consumer goods? A systematic literature review. International Journal of Infection Control, 20. https://doi.org/10.3396/ijic.v20.23758

Issue

Section

Review Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.